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Electron correlation physics has two aspects: the extent to which the ground state
wave function is significantly different from the single Slater determinant that characterizes
the non-interacting many-electron wave function, and the extent to which the frequency
dependence of the electron spectral function deviates significantly from the single delta
function characteristic of non-interacting particles. Similarly, methods for dealing with
correlated electron problems may be crudely divided into those designed to capture ground
state properties (especially the energy) and those primarily aimed at calculating excitations.

A taxonomy of correlated electron systems is:

1. Approximately free electrons. Here the key physics is the long-ranged part of the
Coulomb interaction and the essential parameter is rg, roughly the inter-electron
distance expressed in units of the effective Bohr radius For rg < 1 (very high density)
the interactions may be treated perturbatively; typical wide-band metals have 2 <
rs < 6 and the Wigner crystallization transition occurring at an rg ~ 30 — 80
(with the range depending on dimensionality). The Dirac dispersion means graphene
presents a special case.

2. Materials with partially filled but strongly localized (tight-binding-like) orbitals (tran-
sition metal oxides, sulfides, pncitides), rare earth and actinide compounds, certain
organic conductors. Here the key role is played by short ranged (intra-orbital) inter-
actions and the physics is driven by suppression of certain electronic configurations of
the localized orbitals and concomitant enhancement of the importance of emergent,
typically slowly fluctuating degrees of freedom such as electron spins. We further
distinguish

(a) Mott-Hubbard systems, where the key physics is Coulomb blockade (suppression
of charge configurations by an on-site density-density repulsion U) and correla-
tion effects are maximized when the density of electrons is high (d-shells with
nearly integer filling).

(b) Charge-transfer systems (mainly oxides comprising first-row transition metals),

where the physics is controlled by the energy difference between ligand states
and transition metal d-levels



(c) ‘Hunds metals’ where the physics is controlled by states of very high total spin
with slowly fluctuating local moments. This correlation effect is not tied to the
proximity to a Mott transition.

3. Heavy fermions, where the physics is of a broad band of weakly correlated electrons
coupled to local moments

4. Special cases, including the quantized Hall states, one dimensional (spin chain and
Luttinger liquid) materials, and quantum impurity models (a fininte number of in-
teracting degrees of freedom coupled to a non-interacting band of states).

Density functional theory is both an algorithm (in principle exact, in practice approxi-
mate) for computing the ground state energy and charge distribution and an approximation
(with no formal status at all) to the ground state wave function as a Slater determinant of
Kohn-Sham eigenfunctions and to excitation energies (as differences of Kohn-Sham eigen-
values) and matrix elements (as overlaps of operators and Kohn-Sham eigenfunctions). In
the physics community, discussions of failures of density functional theory often focus on
the eigenstates. Here I present two examples where DFT gives substantially incorrect en-
ergy differences and structures, as well as a quantitatively incorrect electronic excitation
spectrum: a ‘spin crossover molecule’ [Jia Chen, C. Marianetti and A. J. Millis, Phys. Rev.
B91 241111 (2015)] and the rare earth nickelates [Hyowon Park, Andrew J. Millis, Chris
A. Marianetti, Phys. Rev. B89, 245133 (2014); Hyowon Park, Andrew J. Millis, Chris A.
Marianetti, Phys. Rev. B90, 235103 (2014) and E. A. Nowadnick, J. P. Ruf, H. Park, P.
D. C. King, D. G. Schlom, K. M. Shen, A. J. Millis, Phys. Rev. B92, 245109 (2015)].

Improvements to density functional theory may be viewed as quantum embedding algo-
rithms, in which a subset of orbitals and matrix elements are treated by an exact many-body
method, while the other degrees of freedom are treated by density functional theory. Em-
bedding methods include dynamical mean field theory [Antoine Georges, Gabriel Kotliar,
Werner Krauth and Marcelo Rozenberg, Rev Mod Phys 68 13 (1996)] (DFT +U is just
the Hartree approximation to this), Density Matrix Embedding theory [G. Knizia and G.
Chan, Phys. Rev. Lett. 109 106484 (2012)] and Self Energy Embedding Theory [T. N.
Land, A. A. Kananenka and D. Zgid, J. Chem Phys. 143 241102 (2015)]. The formalism
and physics associated with embedding, in particular the physics of the “double counting
correction” will be discussed.

A brief discussion of the ideas behind the different ideas for solution of quantum many
body models will be given, including wave function methods such as CI and its general-
izations and DMRG /matrix product methods and the different Monte Carlo approaches,
in particular diagrammatic Monte Carlo and FCI-QMC. Looking toward the future the
importance of benchmarking and comparison of different algorithms is stressed (with ex-
amples from the Simons Foundation Hubbard benchmarking project) and also the need for
developing the methods needed to manage the large computational overhead of realistic
interaction matrix elements and orbitals.



